KERS - Sistema de recuperación de Energía Cinética

Un freno regenerativo es un dispositivo que permite reducir la velocidad de un vehículo transformando parte de su energía cinética en energía eléctrica. Esta energía eléctrica es almacenada para un uso futuro.El freno regenerativo en trenes eléctricos alimenta la fuente de energía del mismo. En vehículos de baterías y vehículos híbridos, la energía es almacenada en un banco de baterías o un banco de condensadores para un uso posterior.El freno regenerativo es un tipo de freno dinámico. Otro tipo de freno dinámico es el freno reostático, mediante el cual la energía eléctrica generada en la frenada es disipada en forma de calor.El frenado tradicional, basado en la fricción, sigue siendo usado junto con el regenerativo por las siguientes razones:El frenado regenerativo reduce de manera efectiva la velocidad a niveles bajos La cantidad de energía a disipar está limitada a la capacidad de absorción de ésta por parte del sistema de energía, o el estado de carga de las baterías o los condensadores. Un efecto no regenerativo puede ocurrir si otro vehículo conectado a la red suministradora de energía no la consume o si las baterías o condensadores están cargados completamente. Por esta razón es necesario contar con un freno reostático que absorba el exceso de energía.

El motor como freno
Los frenos regenerativos se basan en el principio de que un motor eléctrico puede ser utilizado como generador. El motor eléctrico de tracción es reconectado como generador durante el frenado y las terminales de alimentación se convierten en suministradoras de energía la cual se conduce hacia una carga eléctrica, es esta carga, la que provee el efecto de frenado.

Funcionamiento en un tren eléctrico
Durante el frenado, las conexiones del motor de tracción son modificadas, mediante un dispositivo electrónico, para que funcione como un generador eléctrico. Por ejemplo, los motores de corriente continua brushless (del inglés, sin escobillas), cuentan, normalmente, con sensores de
efecto Hall para determinar la posición del rotor del motor, lo que permite tener información del vehículo y calcular cómo se ha de frenar la corriente generada en el motor hacia los sistemas de almacenamiento, que pueden ser baterías o supercondensadores.
Los campos del motor se conectan al motor principal de tracción y las armaduras del motor se conectan a la carga. El motor de tracción excita los campos, las ruedas del vehículo, ya sea un
automóvil, un trolebús, o una locomotora, al girar, mueven las armaduras, y los motores actúan como generadores. Cuando los motores funcionan como generadores, la corriente generada en ellos se puede hacer pasar a través de resistencias eléctricas, lo que daría lugar a un frenado reostático. Si se envía a la línea de suministro, en el caso de un trole, o una locomotora, o a las baterías o un supercondensador, en el caso de un vehículo autónomo e independiente de una línea de corriente, se estaría hablando de frenado regenerativo.
Si el movimiento del vehículo es decelerado, el flujo de corriente a través de la armadura del motor durante ese frenado debe de ser contrario al que se utiliza para accionar al motor.
El esfuerzo de frenado es proporcional al producto de la fuerza magnética de las líneas de campo multiplicado por la velocidad angular de la armadura.

Uso en el automovilismo (KERS)
El dispositivo denominado KERS (Kinetic Energy Recovery System, sistema de recuperación de energía cinética) entrará en vigor en 2009 en la competición de Fórmula 1. Además de abaratar los costos, el objetivo de este dispositivo es aumentar la facilidad y el número de adelantamientos, que con el avance de la aerodinámica han ido disminuyendo. Ha sido diseñado y desarrollado por Xtrac, Torotrack y Flybrid System con las especificaciones impuestas por la FIA y la UE.
Este componente funciona obteniendo la energía que se disiparía en forma de calor en las frenadas, acumulándola en un volante de inercia. La idea es que esa energía almacenada otorgará una potencia extra de 60
kW (unos 80 CV) durante aproximadamente 6,67 segundos en la fase de aceleración tras la frenada. Sin embargo, es posible que la importancia del KERS vaya en aumento con los años, llegándose incluso a los 270 CV durante 8 s con los motores limitados a 400 CV que en principio llegarán en la próxima década.
Las escuderías podrán elegir entre tres opciones para diseñar el dispositivo: un sistema mecánico, un sistema eléctrico (similar a una
batería inercial), o un sistema neumático. En principio la mayoría de equipos utilizarán la versión mecánica, ya que es más eficiente y compacta. Sin embargo, es posible que algún equipo se decante por la eléctrica ya que, aunque es menos eficiente porque debe convertir la energía mecánica en eléctrica y viceversa, tiene la ventaja de que puede colocarse en cualquier lugar del monoplaza (no como el mecánico que ha de estar cerca de la trasmisión).

Fuente: www.abc.es

Publicado por: Agustina

No hay comentarios: